Формула для расчета площади неправильного многоугольника

Содержание
  1. Урок 4: Площадь многоугольников
  2. Площадь прямоугольного треугольника
  3. Площадь произвольного треугольника
  4. Площадь параллелограмма
  5. Площадь ромба
  6. Площадь трапеции
  7. Формула для расчета площади неправильного многоугольника
  8. 404 not found
  9. Теория
  10. Площадь и периметр многоугольника
  11. Как посчитать площадь многоугольника
  12. Как узнать площадь многоугольника?
  13. Равносторонний треугольник
  14. Формулы для стороны, периметра и площади правильного треугольника
  15. Площадь многоугольника
  16. Как найти площадь многоугольника?
  17. 1 Нахождение площади шестиугольника при известной длине стороны
  18. 3 Нахождение площади многогранника при известных координатах вершин
  19. Как рассчитать площадь неправильного многоугольника с разными сторонами
  20. Как найти площадь правильного и неправильного шестиугольника?
  21. Калькулятор площади неправильного многоугольника по сторонам
  22. Формула площади гаусса
  23. Формула расчета площади неправильного многоугольника
  24. Формула расчета площади неправильного четырехугольника
  25. Готовьтесь вместе с образовательным порталом «Школково»
  26. Смотрите видео: Площадь четырёхугольника на клетчатой бумаге (January 2020)
  27. Как найти площадь неправильного многоугольника формула

Урок 4: Площадь многоугольников

Формула для расчета площади неправильного многоугольника

План урока:

Площадь прямоугольного треугольника

Площадь произвольного треугольника

Площадь параллелограмма

Площадь ромба

Площадь трапеции

Площадь прямоугольного треугольника

Пусть в прямоугольном треугольнике известны два его катета. Обозначим их буквами а и b. Как тогда вычислить площадь такого треуг-ка?

Прямоугольный треугольник можно достроить до прямоугольника:

Площадь получившегося прямоугольника равна произведению чисел а и b. С другой стороны, прямоугольник состоит из двух треуг-ков площадью S, поэтому его общая площадь составляет 2S. Тогда можно записать, что

Задание. Катеты прямоугольного треугольника имеют длины 3 и 4. Определите его площадь.

Решение. Просто подставляем в формулу вместе букв a и b числа 3 и 4:

Задание. Площадь прямоугольного треугольника равна 100, а один катет больше другого вдвое. Найдите оба катета.

Решение. Пусть меньший катет равен х, тогда больший катет будет равен 2х. Выразим площадь прямоугольного треугольника через х:

[attention type=yellow]

Естественно, нас интересует только положительный корень, а отрицательный можно отбросить:

[/attention]

x = 10

Меньший катет оказался равным 10, тогда больший катет, который вдвое больше, будет равен 20.

Ответ: 10; 20.

Задание. Найдите площадь фигуры, показанной на рисунке. Сторона каждой клеточки имеет длину, равную единице:

Решение. Эту фигуру можно разбить на квадрат со стороной 8 и два прямоугольных треуг-ка, то есть всего на три фигуры:

Подсчитаем площадь каждой из трех фигур по отдельности:

Чтобы найти площадь всей фигуры, достаточно просто сложить три полученных числа:

Задание. Вычислите площадь треуг-ка, изображенного на рисунке (площадь каждой отдельной клеточки составляет единицу):

Решение. Здесь проблема заключается в том, что треуг-к прямоугольным не является. Однако можно построить прямоуг-к, который будет состоять сразу из 4 треуг-ков:

Мы можем найти как площадь всего прямоугольника (обозначим ее как S), так и площади трех прямоугольных треуг-ков S1, S2 и S3:

Площадь произвольного треугольника

Перейдем к более сложному случаю, когда необходимо подсчитать площадь произвольного треугольника, не являющегося прямоугольным. Предположим, надо найти площадь произвольного ∆АВС. Опустим из А на сторону ВС высоту АН:

В результате мы получили два прямоугольных треуг-ка, ∆АВН и ∆АCН. Мы уже знаем, как найти их площади:

Общая площадь всего ∆АВС равна сумме площадей ∆АВН и ∆АСН. Запишем ее и вынесем общий множитель АН/2 за скобки:

[attention type=red]

В скобках стоит сумма ВН + НС. Но ведь эта сумма равна длине стороны ВС! Тогда окончательно формулу можно записать в виде:

[/attention]

Получили, что для вычисления площади произвольного треугольника надо сначала умножить его высоту на сторону, на которую она падает, а далее поделить результат на 2. Однако для полного доказательства этого факта надо рассмотреть особый случай, когда высота в треуг-ке падает не на сторону, а на ее продолжение (такая ситуация возникает в тупоугольном треуг-ке):

На рисунке снова получились всё те же прямоугольные треуг-ки ∆АСН и ∆АВН. Запишем формулы их площади:

Отличие в том, что на этот раз площадь АВС можно вычислить не как сумму, а как разницу этих площадей:

Итак, можно сформулировать следующее правило:

Примечание. Часто сторону, на которую опущена высота, называют основанием треуг-ка.

Задание. Вычислите площадь ∆АВС, если сторона АВ имеет длину 7, а высота СН равна 4.

Решение. В данной задаче на сторону длиной 7 падает высота длиной 4. Надо просто подставить эти числа в формулу:

Задание. Докажите, что медиана треуг-ка разбивает его на два равновеликих треуг-ка.

Решение.

Пусть в ∆АВС проведена медиана СМ. Требуется доказать, что

Важно заметить, что СН будет являться высотой не только для ∆АВС, но также и для ∆СВМ и ∆САМ. Обозначим СН как h, а АВ как а. Тогда мы можем найти длины отрезков ВМ и АМ, ведь медиана делит сторону АВ пополам:

Получили одно и то же значение, то есть площади треуг-ков равны.

В рассмотренной задаче мы использовали тот факт, что у нескольких треуг-ков может быть общая высота. Общая высота используется и в многих других геометрических задачах.

Задание. Предложите способ, как разделить треуг-к, показанный на рисунке, на три равновеликих треуг-ка:

Чтобы треуг-ки были равновелики, достаточно, чтобы у них была общая высота, а основания, на которые эта высота падает, были бы равны друг другу. Поэтому можно просто поделить нижнюю сторону на три одинаковых отрезка (длиной по 7 клеток) и соединить концы полученных отрезков с противоположной вершиной:

[attention type=green]

Красной линией здесь показаны границы треуг-ков, а штриховой – их общая высота СН. Вычислить площадь каждого из треуг-ков можно по следующим формулам:

[/attention]

Но отрезки BD, DE и EA одинаковы (по 7 клеточек), поэтому одинаковы будут и площади:

Заметим, что необязательно делить на три одинаковых отрезка именно нижнюю сторону. Допустимы и два других варианта решения:

Но и это не единственные решения задачи. Попробуйте самостоятельно предложить ещё несколько вариантов.

Формула площади треуг-ка показывает, что между длинами высот и сторон есть взаимосвязь.

Задание.В ∆РЕТ РЕ = 72, ЕТ = 45. Высота ТН имеет длину 40. Найдите высоту РМ.

Решение.

Зная ТН и РЕ, мы сможем найти площадь треуг-ка:

Теперь запишем эту формулу площади в ином виде, когда используется высота МР и сторона ЕТ

Величину SРЕТ мы только что вычислили, а длина ЕТ известна из условия, поэтому можно подставить их в формулу:

Площадь параллелограмма

Для вычисления площади параллелограмма введем понятие «высота параллелограмма». Так называют перпендикуляр, опущенный на сторону параллелограмма (ее в такой ситуации часто называют основанием) из одной из вершин параллелограмма.

Важно понимать, что высоты могут упасть не на само основание, а на его продолжение.

Так как у каждого параллелограмма есть 4 вершины, а из каждой из них можно опустить высоту на две противоположных вершины, то всего у параллелограмма должно быть 8 высот:

[attention type=yellow]

На рисунке синим показаны высоты параллелограмма, а красным цветом отмечены продолжения оснований. Оказывается, что площадь параллелограмма равна произведению его высоты и основания, на которую она опущена. Докажем это.

[/attention]

Опустим в параллелограмме АВСD высоты ВН и СК:

В результате получили четырехуг-к ВНКС, который является прямоугольником, ведь все его углы прямые. Очевидно, что ∆АВН и ∆DCK равные. Это можно доказать тем, что они являются прямоугольными, у них есть одинаковые гипотенузы АВ и CD (они равны как противоположные стороны параллелограмма) и одинаковые катеты ВН и СК (это уже противоположные стороны прямоугольника ВНКС).

Раз они равны, то одинаковы и их площади:

Но величину S3 можно заменить на S2. В свою очередь полученная сумма равна площади прямоугольника ВНКС, которая может быть вычислена как произведение его смежных сторон:

Но ВН – это высота, а НК – основание параллелограмма. То есть мы доказали следующее утверждение:

Задание. Найдите площадь параллелограмма, изображенного на рисунке:

Решение. По рисунке несложно определить длину как основания, так и высоты параллелограмма:

Далее надо просто перемножить эти длины:

Примечание. Конечно, если вы вдруг забыли формулу площади параллелограмма, можно просто разделить его на прямоугольник и два прямоугольных треуг-ка:

Дальше можно просто посчитать по отдельности S1, S2и S3, после чего сложить их. Попробуйте сделать это самостоятельно.

Задание. Площадь параллелограмма равна 162 см2, а одна из его высот вдвое короче основания, к которому она проведена. Найдите эту высоту и основание.

Решение. В данной задаче не потребуется даже рисунок. Обозначим высоту буквой h, тогда основание, которое вдвое длиннее, составляет 2h. Произведение этих чисел – это площадь, то есть оно равно 162:

Высота равна 9, а основание будет вдвое больше, то есть его длина равна 18.

Ответ: 9 и 18.

Задание. Смежные стороны параллелограмма ABCD имеют длину 12 и 14 см, а угол между ними равен 30°. Вычислите его площадь.

[attention type=red]

Решение. Опустим на сторону длиной 14 см высоту:

[/attention]

Для вычисления площади надо сначала найти высоту ВН. Её можно определить из ∆АВН. Он является прямоугольным, а его острый угол∠А = 30°. У такого треуг-ка катет, лежащий против 30°, вдвое меньше АВ:

Площадь ромба

Многие четырехуг-ки, изученные нами ранее, являются частными случаями параллелограмма. Для прямоугольника и квадрата мы уже знаем формулы вычисления площади. Осталось разобраться с ромбом. Ясно, что его площадь можно найти также, как и у параллелограмма. Однако площадь ромба можно посчитать и зная только его диагонали.

Построим ромб и проведем в нем диагонали:

Нам уже известно, что диагонали ромба пересекаются под прямым углом, а точка их пересечения является серединой для каждой диагонали:

Получается, что диагонали разбивают ромб на 4 одинаковых прямоугольных треуг-ка. Высчитаем, к примеру, SAOB:

В результате мы доказали следующее утверждение:

Задание. Одна диагональ ромба равна 3,2 дм, а другая составляет 14 см. Найдите его площадь.

Решение. Для начала надо перевести все длины в одинаковые единицы измерения. Заменим дециметры на сантиметры:

Задание. Одна диагональ ромба в три раза длиннее другой, а площадь фигуры составляет 150. Вычислите длину диагоналей ромба.

Решение. Обозначим меньшую диагональ как х, тогда вторая будет равна 3х. Выразим площадь через х:

Вторая диагональ ромба будет втрое длиннее, то есть ее длина равна 3•10 = 30

Ответ: 10 и 30 см.

Площадь трапеции

Осталось рассмотреть единственный известный нам вид четырехуг-ка, который не является параллелограммом. Это трапеция. Для вычисления ее площади также потребуется высота. Под ней подразумевают перпендикуляр, опущенный из вершины трапеции на одно из ее оснований. Другими словами, высота трапеции – это расстояние между основаниями трапеции.

В произвольной трапеции ABCD, где АD – большее основание, опустим из В высоту (то есть перпендикуляр) на AD, а из D– высоту на ВС. Также проведем диагональ ВD:

Ясно, что общая площадь трапеции будет равна сумме площадей ∆АВDи ∆ВСD. В свою очередь площадь каждого из них можно подсчитать по стороне и опущенной на нее высоте. Высоты мы как раз и провели, это ВН и DK, поэтому можно записать:

[attention type=green]

Теперь заметим, что отрезки ВН и КD одинаковы, ведь фигура ВНDК является прямоугольником. Тогда площадь ∆ВСD можно записать в таком виде:

[/attention]

В итоге мы доказали, что для вычисления площади трапеции следует ее высоту умножить на сумму длин оснований, после чего поделить результат на два. Обычно этот факт записывают следующим образом:

Задание. У трапеции АВСD основаниями являются АВ (21 см) и CD (17 см). Высота ВН составляет 7 см. Найдите площадь трапеции.

Решение. Это простая задача на использование формулы площади трапеции:

Задание. Найдите площадь прямоугольной трапеции, показанной на рисунке (площадь клеточки равна единице):

Решение. На рисунке показана прямоугольная трапеция. Её высота равна длине ее правой боковой стороны трапеции. Покажем размеры, необходимые нам для выполнения расчета:

Считаем площадь:

Задание. Тупой угол равнобедренной трапеции составляет 135°. Проведенная из этого угла высота делит противолежащее основание на отрезки длиной 14 и 34 см. Какова площадь трапеции?

Решение. Выполним построение:

Найдем острый угол трапеции. Так как CD||АВ, то

Рассмотрим ∆АDH. Он прямоугольный, а один из его острых углов равен 45°. Тогда и второй острый угол также равен 45°. То есть это равнобедренный треуг-к. Это помогает найти длину высоты DH:

ведь это прямоугольныетреуг-ки с равными гипотенузой и катетом:

Из равенства треуг-ков следует, что

Итак, сегодня мы узнали, как вычислять площади треуг-ков и некоторых видов четырехуг-ков. В большинстве случаев предварительно необходимо найти высоту в многоугольнике. В будущем мы узнаем ещё несколько формул для вычисления площадей фигур.

Формула для расчета площади неправильного многоугольника

Формула для расчета площади неправильного многоугольника

Площадь многоугольника.

Важно

Обычно они записываются как (x1; y1) для первой, (x2; y2) — для второй, а n-ая вершина имеет такие значения (xn; yn). Тогда площадь многоугольника определяется, как сумма n слагаемых.

Внимание

Каждое из них выглядит так: ((yi+1 +yi)/2) * (xi+1 — xi). В этом выражении i изменяется от единицы до n. Стоит отметить, что знак результата будет зависеть от обхода фигуры.

При использовании указанной формулы и движении по часовой стрелке ответ будет получаться отрицательным. Пример задачи Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5).

Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8.

404 not found

Калькулятор расчета площади земельного участка неправильной формы Полезные калькуляторы Конвертер единиц площади / Конвертер единиц длины Расчет площади прямоугольника a=ммсммкмфутярддюйммиля b=ммсммкмфутярддюйммиля Вычислить Расчет площади треугольника Способ нахождения площади треугольника: По трем сторонамПо одной стороне и высоте, опущенной на эту сторонуПо двум сторонам и углу между ними a=ммсммкмфутярддюйммиля b=ммсммкмфутярддюйммиля c= ммсммкмфутярддюйммиля град.рад. Вычислить Расчет площади параллелограмма Способ нахождения площади параллелограмма:По основанию и высоте параллелограммаПо двум сторонам и углу между нимиПо двум диагоналям и углу между ними a=ммсммкмфутярддюйммиля h=ммсммкмфутярддюйммиля c= ммсммкмфутярддюйммиля град.рад.

Теория

Правильный многоугольник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.

Правильный многоугольник так же называют правильным n-угольником, где n — это количество сторон в многоугольнике (пятиугольник, шестиугольник и т.д.).

В любой правильный многоугольник можно вписать окружность. Такая окружность называется вписанной окружностью.

Около любого правильного многоугольника можно описать окружность.

Центры вписанной в правильный многоугольник окружности и описанной около правильного многоугольника окружности совпадают. Эту точку называют центром правильного многоугольника.

Площадь и периметр многоугольника

В правильный многоугольник можно вписать окружность и описать окружность вокруг него. Радиусы внутренней и внешней окружности всецело зависят от длины стороны и их количества. Чтобы найти радиус вписанной окружности правильного многоугольника, зная сторону, нужно разделить ее на два тангенса угла, полученного делением 180 градусов на количество сторон.

Согласно введен данным, наша программа в онлайн режиме выполнить расчет и определить, площадь земельных угодий в квадратных метрах, сотках, акрах и гектарах.

Правильный Правильный — плоская замкнутая ломаная, состоящая из прямых отрезков. Все стороны и углы правильного равны между собой. Калькулятор расчета и периметра правильного.

Как посчитать площадь многоугольника

На нашем сайте пользователи инж енеров в обл асти ф изики, химической, электрической, эле ктроника, Строительство и гражданских, оптики и лазерн ой, механической, финансов, нефти и газа, структурных и т. Даже несколько средних школ исп ользует наш сайт в свои учебные пр ограммы и препод авать вПравильный многоугольник = (A * P) / 2 где A = сторона / (2 * Tan(π / N))

  1. R = Радиус описанной окрудности,
  2. A = Радиус вписанного круга,
  3. P = Периметр
  4. N = Количество сторон,

Задача 1 : Найдите и периметр многоугольника, если длина стороны = 2 и количество = 4.
Шаг 1: Найдем. = ((длина стороны)² * N) / (4Tan(π / N)) Шаг 2: Найдем периметр.

Как узнать площадь многоугольника?

а, b и c – длины сторон треугольника, р – полупериметр (стандартное обозначение). Как рассчитать площадь четырехугольника На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн.

Для расчета задайте длину, длины диагоналей и угол между ними, противолежащие углы, радиус окружности. Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (), попарно соединяющих эти точки.

Равносторонний треугольник

  • S = √3×a²/4, где а – сторона треугольника (любая, так как в равностороннем треугольнике все стороны равны).
  • S = 3√3×R²/4, где R – радиус окружности, в которую вписан треугольник.
  • S = 3√3×r², где r – радиус окружности, которая вписана в треугольник.
  • S = h²/√3, где h – высота равностороннего треугольника.

Формулы для стороны, периметра и площади правильного треугольника

ВеличинаРисунокФормулаОписание
ПериметрP = 3aВыражение периметра через сторону
ПлощадьПосмотреть вывод формулыВыражение площади через сторону
ПлощадьВыражение площади через сторону и радиус вписанной окружности
СторонаВыражение стороны через радиус вписанной окружности
ПериметрВыражение периметра через радиус вписанной окружности
ПлощадьПосмотреть вывод формулыВыражение площади через радиус вписанной окружности
СторонаВыражение стороны через радиус описанной окружности
ПериметрВыражение периметра через радиус описанной окружности
ПлощадьПосмотреть вывод формулыВыражение площади через радиус описанной окружности
Формулы для периметра правильного треугольника
Выражение периметра через сторонуP = 3aВыражение периметра через радиус вписанной окружностиВыражение периметра через радиус описанной окружности
Формулы для площади правильного треугольника
Выражение площади через сторонуПосмотреть вывод формулыВыражение площади через сторону и радиус вписанной окружностиВыражение площади через радиус вписанной окружностиПосмотреть вывод формулыВыражение площади через радиус описанной окружностиПосмотреть вывод формулы
Формулы для стороны правильного треугольника
Выражение стороны через радиус вписанной окружностиВыражение стороны через радиус описанной окружности

Площадь многоугольника

Внимание

Это может быть:

  • треугольник;
  • четырехугольник;
  • пяти- или шестиугольник и так далее.

Такая фигура непременно будет характеризоваться двумя положениями:

  1. Смежные стороны не принадлежат одной прямой.
  2. У несмежных отсутствуют общие точки, то есть они не пересекаются.

Чтобы понять, какие вершины являются соседними, потребуется посмотреть, принадлежат ли они одной стороне. Если да, то соседние. В противном случае их можно будет соединить отрезком, который необходимо назвать диагональю. Их можно провести только в многоугольниках, у которых больше трех вершин.

Какие их виды существуют? Многоугольник, у которого больше четырех углов, может быть выпуклым или вогнутым. Отличие последнего в том, что некоторые его вершины могут лежать по разные стороны от прямой, проведенной через произвольную сторону многоугольника.

Как найти площадь многоугольника?

Еще одной важной характеристикой многоугольников является то, что смежные его отрезки не лежат на одной прямой, а несмежные — не имеют общих точек. Данное определение проще понять взглянув на рисунок.

где P — периметр, определяемый как произведение количества его сторон на их длину;

r — радиус вписанной в окружности.

1 Нахождение площади шестиугольника при известной длине стороны

  1. 1 Запишем формулу. Так как правильный шестиугольник состоит из 6 равносторонних треугольников, то формула образована из формулы нахождения площади равностороннего треугольника: Площадь = (3√3 s2)/ 2 где s — длина стороны правильного шестиугольника.
  2. 2 Определим длину одной стороны. Если нам известна длина стороны, то просто запишем ее.

    В нашем случае длина стороны — 9 см. Если длина стороны неизвестна, но известен периметр или апофема (высота одного из шести равносторонних треугольников, перпендикулярная стороне), то можно найти и длину стороны. Вот, как это делается:

  3. Если известен периметр, то просто делим его на 6 и получаем длину стороны.

    Если, например, периметр — 54 см, то разделив 54 на 6 мы получим 9 см, длину стороны.

  4. Если известна только апофема, то длину стороны можно вычислить подставив апофему в формулу a = x√3 и затем умножив ответ на 2. Это делается потому, что апофема представляет собой сторону x√3 образуемого ей треугольника с углами 30-60-90 градусов.

    Если, например, апофема — 10√3, то х — 10 и длина стороны будет равна 10 * 2 или 20.

  5. 3 Подставьте значение длины стороны в формулу. Просто подставляем 9 в изначальную формулу. Получаем: площадь = (3√3 x 92)/2
  6. 4 Упрощаем ответ. Решаем уравнение и записываем ответ. Ответ должен быть указан в квадратных единицах, ведь мы имеем дело с площадью.

    Вот, как это делается:

  7. (3√3 x 92)/2 =
  8. (3√3 x 81)/2 =
  9. (243√3)/2 =
  10. 420.8/2 =
  11. 210.4 см2

3 Нахождение площади многогранника при известных координатах вершин

  1. 1 Запишите координаты всех вершин по осям x и y. Если известны вершины шестиугольника, то первым делом надо начертить таблицу с двумя колонками и семью рядами. Каждый ряд будет назван по названию по одной из шести точек (Точка А, Точка В, Точка С и т.д.), каждая колонка будет названа по осям х или у, соответствующим координатам точек по этим осям. Запишите координаты точки А по осям х и у справа от точки, координаты точки В — справа от точки В и т.д. Внизу повторно укажите координаты первой точки. Для примера скажем, что мы имеем дело со следующими точками, в формате (х, у):
  2. A: (4, 10)
  3. B: (9, 7)
  4. C: (11, 2)
  5. D: (2, 2)
  6. E: (1, 5)
  7. F: (4, 7)
  8. A (снова): (4, 10)
  9. 2 Умножаем координаты каждой точки по оси х на координаты по оси у следующей точки. Это можно представить себе так: мы проводим диагональ вниз и вправо от каждой координаты по оси х. Запишем результаты справа от таблицы. Затем складываем их.
  10. 4 x 7 = 28
  11. 9 x 2 = 18
  12. 11 x 2 = 22
  13. 2 x 5 = 10
  14. 1 x 7 = 7
  15. 4 x 10 = 40
  16. 28 + 18 + 22 + 10 + 7 + 40 = 125
  17. 3 Умножаем координаты каждой точки по оси у на координаты по оси х следующей точки. Это можно представить себе так: мы проводим диагональ вниз и влево от каждой координаты по оси у. Перемножив все координаты складываем результаты.
  18. 10 x 9 = 90
  19. 7 x 11 = 77
  20. 2 x 2 = 4
  21. 2 x 1 = 2
  22. 5 x 4 = 20
  23. 7 x 4 = 28
  24. 90 + 77 + 4 + 2 + 20 + 28 = 221
  25. 4 Вычитаем из первой суммы координат вторую сумму координат. Вычитаем 221 из 125 и получаем -96. И так ответ: 96, площадь может быть только положительной.
  26. 5 Делим разность на два. Делим 96 на 2 и получаем площадь неправильного шестиугольника. Окончательный ответ: 48 квадратных единиц.

Как рассчитать площадь неправильного многоугольника с разными сторонами

Формула для расчета площади неправильного многоугольника

› Потребительское право

08.01.2020

Конвертер единиц расстояния и длины Конвертер единиц площади Присоединяйтесь © 2011-2017 Довжик Михаил Копирование материалов запрещено.

В онлайн калькуляте можно использовать величины в одинаквых единицах измерения! Если у вас возниели трудности с преобразованием едениц измерения воспользуйтесь конвертером единиц расстояния и длины и конвертером единиц площади.

Дополнительные возможности калькулятора вычисления площади четырехугольника

  • Между полями для ввода можно перемещаться нажимая клавиши «вправо» и «влево» на клавиатуре.

Теория. Площадь четырехугольника Четырёхугольник — геометрическая фигура, состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), попарно соединяющих эти точки. Четырёхугольник называется выпуклым, если отрезок соединяющий любые две точки этого четырехугольника, будет находиться внутри него.

Как найти площадь правильного и неправильного шестиугольника?

  • Зная длину стороны, умножим её на 6 и получим периметр шестиугольника:10 см х 6 = 60 см
  • Подставим полученные результаты в нашу формулу:
  • Площадь = 1/2*периметр*апофему Площадь = ½*60см*5√3 Решаем: Теперь осталось упростить ответ, чтобы избавиться от квадратных корней, а полученный результат укажем в квадратных сантиметрах: ½ * 60 см * 5√3 см =30 * 5√3 см =150 √3 см =259.8 см² о том, как найти площадь правильного шестиугольника Существует несколько вариантов определения площади неправильного шестиугольника:
  • Метод трапеции.
  • Метод расчета площади неправильных многоугольников при помощи оси координат.
  • Метод разбивания шестиугольника на другие фигуры.

В зависимости от исходных данных, которые вам будут известны, подбирается подходящий метод.

Площадь равностороннего шестиугольника равняется 6 площадям треугольников, на которые разбита правильная шестиугольная фигура.

Все треугольники в шестиугольнике правильной формы равны, поэтому для нахождения площади такого шестиугольника достаточно будет знать площадь хотя бы одного треугольника.

Для нахождения площади равностороннего шестиугольника используется, конечно же, формула площади правильного шестиугольника, описанная выше.

Калькулятор площади неправильного многоугольника по сторонам

  • — рулетка;
  • — электронный дальномер;
  • — лист бумаги и карандаш;
  • — калькулятор.

Инструкция 1 Если вам нужна общая площадь квартиры или отдельной комнаты, просто прочтите технический паспорт на квартиру или дом, там указан метраж каждого помещения и общий метраж квартиры.

2 Для измерения площади прямоугольной или квадратной комнаты возьмите рулетку или электронный дальномер и измерьте длину стен. При измерении расстояний дальномером обязательно следите за перпендикулярностью направления луча, иначе результаты замеров могут быть искажены. 3 Затем полученную длину (в метрах) комнаты умножьте на ширину (в метрах).

Полученное значение и будет площадью пола, она измеряется в квадратных метрах.

Формула площади гаусса

Если требуется посчитать площадь пола более сложной конструкции, например, пятиугольной комнаты или комнаты с круглой аркой, схематично начертите эскиз на листе бумаги.

Затем разделите сложную форму на несколько простых, например, на квадрат и треугольник или прямоугольник и полукруг.

Измерьте при помощи рулетки или дальномера величину всех сторон получившихся фигур (для круга необходимо узнать диаметр) и занесите результаты на ваш чертеж.

[attention type=yellow]

5 Теперь посчитайте площадь каждой фигуры по отдельности. Площадь прямоугольников и квадратов высчитывайте перемножением сторон. Для расчета площади круга диаметр разделите пополам и возведите в квадрат (умножьте его на самого себя), затем умножьте полученное значение на 3,14.

[/attention]

Если вам нужна только половина круга, разделите полученную площадь пополам. Чтобы рассчитать площадь треугольника, найдите Р, для этого сумму всех сторон поделите на 2.

Формула расчета площади неправильного многоугольника

Если точки пронумерованы последовательно в направлении против часовой стрелки, то детерминанты в формуле выше положительны и модуль в ней может быть опущен; если они пронумерованы в направлении по часовой стрелке, детерминанты будут отрицательными. Это происходит потому, что формула может рассматриваться как частный случай теоремы Грина. Для применения формулы необходимо знать координаты вершин многоугольника в декартовой плоскости.

Для примера возьмём треугольник с координатами . Возьмём первую х -координату первой вершины и умножим её на y -координату второй вершины, а затем умножим х второй вершины на y третьей. Повторим эту процедуру для всех вершин. Результат может быть определен по следующей формуле:[3] A tri.

Формула расчета площади неправильного четырехугольника

A> _=|x_y_+x_y_+x_y_-x_y_-x_y_-x_y_|> где xi и yi обозначают соответствующую координату. Эту формулу можно получить, раскрыв скобки в общей формуле для случая n = 3. По этой формуле можно обнаружить, что площадь треугольника равна половине суммы 10 + 32 + 7 − 4 − 35 − 16, что даёт 3.

Число переменных в формуле зависит от числа сторон многоугольника. Например, в формуле для площади пятиугольника будут использоваться переменные до x5 и y5: A pent.

= 1 2 | x 1 y 2 + x 2 y 3 + x 3 y 4 + x 4 y 5 + x 5 y 1 − x 2 y 1 − x 3 y 2 − x 4 y 3 − x 5 y 4 − x 1 y 5 | >=|x_y_+x_y_+x_y_+x_y_+x_y_-x_y_-x_y_-x_y_-x_y_-x_y_|> A для четырехугольника — переменные до x4 и y4: A quad.

  • N = Количество сторон,
  • A = Радиус вписанного круга,
  • R = Радиус описанной окрудности,
  • P = Периметр

Примеры: Задача 1: Найдите площадь и периметр многоугольника, если длина стороны = 2 и количество сторон = 4.
Некоторые неправильные шестиугольники состоят из двух параллелограммов. Для определения площади параллелограмма следует умножить его длину на ширину и затем сложить две уже известные площади.

о том, как найти площадь многоугольника Равносторонний шестиугольник имеет шесть равных сторон и является правильным шестиугольником. Площадь равностороннего шестиугольника равняется 6 площадям треугольников, на которые разбита правильная шестиугольная фигура.

Все треугольники в шестиугольнике правильной формы равны, поэтому для нахождения площади такого шестиугольника достаточно будет знать площадь хотя бы одного треугольника. Для нахождения площади равностороннего шестиугольника используется, конечно же, формула площади правильного шестиугольника, описанная выше.

В задачах по геометрии часто требуется вычислить площадь многоугольника. Причем он может иметь довольно разнообразную форму – от всем знакомого треугольника до некоторого n-угольника с каким-то невообразимым числом вершин.

К тому же эти многоугольники бывают выпуклыми или вогнутыми. В каждой конкретной ситуации полагается отталкиваться от внешнего вида фигуры. Так получится выбрать оптимальный путь решения задачи.

Фигура может оказаться правильной, что существенно упростит решение задачи.

Немного теории о многоугольниках Если провести три или более пересекающихся прямых, то они образуют некоторую фигуру. Именно она является многоугольником. По количеству точек пересечения становится ясно, сколько вершин у него будет.

Готовьтесь вместе с образовательным порталом «Школково»

Занимаясь перед сдачей экзамена, многие учащиеся сталкиваются с проблемой поиска определений и формул, которые позволяют выполнить вычисление площади правильного многоугольника в ЕГЭ. Школьный учебник далеко не всегда оказывается под рукой в нужный момент.

Вместе с образовательным порталом «Школково» подготовка к экзамену будет легкой и эффективной. Здесь представлен весь необходимый материал, подобранный и изложенный нашими специалистами в максимально понятной форме.

Какая именно формула для нахождения площади многоугольника потребуется при работе с треугольником, четырехугольником, параллелограммом, ромбом, прямоугольником, квадратом, трапецией? Всю эту информацию вы найдете в разделе «Теоретическая справка».

Ознакомившись с ней, выпускники смогут восполнить пробелы в знаниях.

[attention type=red]

Чтобы научиться быстро находить правильный ответ, необходимо также попрактиковаться в решении задач на нахождение площади фигур. Большая подборка упражнений представлена в разделе «Каталог».

[/attention]

Для каждой задачи на нахождение площади фигур, например, вычисление площади параллелограмма, наши специалисты прописали подробный ход решения и указали правильный ответ.

Перечень упражнений на сайте постоянно дополняется и обновляется.

Любое задание, например, на подобие площадей подобных треугольников, выпускники могут сохранить в разделе «Избранное». Это позволит в дальнейшем быстро найти интересующее упражнение, например, с целью обсуждения хода его решения с преподавателем.

Смотрите видео: Площадь четырёхугольника на клетчатой бумаге (January 2020)

Как рассчитать площадь неправильного многоугольника с разными сторонами Ссылка на основную публикацию

Как найти площадь неправильного многоугольника формула

Формула для расчета площади неправильного многоугольника

› Компьютеры

Конвертер единиц расстояния и длины Конвертер единиц площади Присоединяйтесь © 2011-2017 Довжик Михаил Копирование материалов запрещено.

В онлайн калькуляте можно использовать величины в одинаквых единицах измерения! Если у вас возниели трудности с преобразованием едениц измерения воспользуйтесь конвертером единиц расстояния и длины и конвертером единиц площади. Дополнительные возможности калькулятора вычисления площади четырехугольника

  • Между полями для ввода можно перемещаться нажимая клавиши «вправо» и «влево» на клавиатуре.

Теория. Площадь четырехугольника Четырёхугольник — геометрическая фигура, состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), попарно соединяющих эти точки. Четырёхугольник называется выпуклым, если отрезок соединяющий любые две точки этого четырехугольника, будет находиться внутри него.

Ваш юрист
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: